13 research outputs found

    Polyhexamethylene Biguanide: Polyurethane Blend Nanofibrous Membranes for Wound Infection Control

    Get PDF
    Polyhexamethylene biguanide (PHMB) is a broad-spectrum antiseptic which avoids many efficacy and toxicity problems associated with antimicrobials, in particular, it has a low risk of loss of susceptibility due to acquired antimicrobial resistance. Despite such advantages, PHMB is not widely used in wound care, suggesting more research is required to take full advantage of PHMB’s properties. We hypothesised that a nanofibre morphology would provide a gradual release of PHMB, prolonging the antimicrobial effects within the therapeutic window. PHMB:polyurethane (PU) electrospun nanofibre membranes were prepared with increasing PHMB concentrations, and the effects on antimicrobial activities, mechanical properties and host cell toxicity were compared. Overall, PHMB:PU membranes displayed a burst release of PHMB during the first hour following PBS immersion (50.5–95.9% of total released), followed by a gradual release over 120 h (≤25 wt % PHMB). The membranes were hydrophilic (83.7–53.3°), gradually gaining hydrophobicity as PHMB was released. They displayed superior antimicrobial activity, which extended past the initial release period, retained PU hyperelasticity regardless of PHMB concentration (collective tensile modulus of 5–35% PHMB:PU membranes, 3.56 ± 0.97 MPa; ultimate strain, >200%) and displayed minimal human cell toxicity (<25 wt % PHMB). With further development, PHMB:PU electrospun membranes may provide improved wound dressings

    Assembly of microbial communities in replicate nutrient-cycling model ecosystems follows divergent trajectories, leading to alternate stable states

    Get PDF
    We studied in detail the reproducibility of community development in replicate nutrient‐cycling microbial microcosms that were set up identically and allowed to develop under the same environmental conditions. Multiple replicate closed microcosms were constructed using pond sediment and water, enriched with cellulose and sulphate, and allowed to develop over several months under constant environmental conditions, after which their microbial communities were characterized using 16S rRNA gene sequencing. Our results show that initially similar microbial communities can follow alternative – yet stable – trajectories, diverging in time in a system size‐dependent manner. The divergence between replicate communities increased in time and decreased with larger system size. In particular, notable differences emerged in the heterotrophic degrader communities in our microcosms; one group of steady state communities was enriched with Firmicutes, while the other was enriched with Bacteroidetes. The communities dominated by these two phyla also contained distinct populations of sulphate‐reducing bacteria. This biomodality in community composition appeared to arise during recovery from a low‐diversity state that followed initial cellulose degradation and sulphate reduction

    Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers.

    No full text
    Two-pore channels (TPCs) are Ca2+-permeable ion channels localised to the endo-lysosomal system where they regulate trafficking of various cargoes including viruses. As a result, TPCs are emerging as important drug targets. However, their pharmacology is ill-defined. There are no approved drugs to target them. And their mechanism of ligand activation is largely unknown. Here, we identify a number of FDA-approved drugs as TPC pore blockers. Using a model of the pore of human TPC2 based on recent structures of mammalian TPCs, we virtually screened a database of ~1500 approved drugs. Because TPCs have recently emerged as novel host factors for Ebola virus entry, we reasoned that Ebola virus entry inhibitors may exert their effects through inhibition of TPCs. Cross-referencing hits from the TPC virtual screen with two recent high throughput anti-Ebola screens yielded approved drugs targeting dopamine and estrogen receptors as common hits. These compounds inhibited endogenous NAADP-evoked Ca2+ release from sea urchin egg homogenates, NAADP-mediated channel activity of TPC2 re-routed to the plasma membrane, and PI(3,5)P2-mediated channel activity of TPC2 expressed in enlarged lysosomes. Mechanistically, single channel analyses showed that the drugs reduced mean open time consistent with a direct action on the pore. Functionally, drug potency in blocking TPC2 activity correlated with inhibition of Ebola virus-like particle entry. Our results expand TPC pharmacology through the identification of approved drugs as novel blockers, support a role for TPCs in Ebola virus entry, and provide insight into the mechanisms underlying channel regulation. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech

    Multicenter prospective study on multivariant diagnostics of autoimmune bullous dermatoses using the BIOCHIPTM technology.

    No full text
    BACKGROUND The current standard in the serological diagnosis of autoimmune bullous diseases (AIBD) is a multistep procedure sequentially applying different assays. In contrast, the BIOCHIPTM mosaic technology combines multiple substrates for parallel analysis by indirect immunofluorescence (IF). METHODS Sera from 749 consecutive, prospectively recruited, direct IF positive AIBD patients from 13 international study centers were analyzed independently and blinded using (i) a BIOCHIPTM mosaic including primate esophagus, salt-split skin, recombinant BP180 NC16A and gliadin GAF3x as well as HEK293 cells expressing recombinant desmoglein1, desmoglein3, type VII collagen, and BP230 C-terminus and (ii) the conventional multistep approach of the Department of Dermatology, University of Lübeck. RESULTS In 731 of 749 sera (97.6%) specific autoantibodies could be detected using the BIOCHIPTM mosaic, similar to the conventional procedure (725 cases, 96.8%). Cohens κ for both serological approaches ranged from 0.84 to 1.00. In 6.5% of sera, differences between the two approaches occurred and were mainly attributed to autoantigen fragments not present on the BIOCHIPTM mosaic. LIMITATIONS Laminin 332 and laminin γ1 are not represented on the BIOCHIPTM mosaic. CONCLUSIONS The BIOCHIPTM mosaic is a standardized, time- and serum-saving approach that further facilitates the serological diagnosis of AIBD

    Search for Scalar Diphoton Resonances in the Mass Range 6560065-600 GeV with the ATLAS Detector in pppp Collision Data at s\sqrt{s} = 8 TeVTeV

    No full text
    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3fb120.3\text{}\text{}{\mathrm{fb}}^{-1} of s=8TeV\sqrt{s}=8\text{}\text{}\mathrm{TeV} pppp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches

    Search for Higgs and ZZ Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector

    No full text
    A search for the decays of the Higgs and ZZ bosons to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma (n=1,2,3n=1,2,3) is performed with pppp collision data samples corresponding to integrated luminosities of up to 20.3fb120.3\mathrm{fb}^{-1} collected at s=8TeV\sqrt{s}=8\mathrm{TeV} with the ATLAS detector at the CERN Large Hadron Collider. No significant excess of events is observed above expected backgrounds and 95% CL upper limits are placed on the branching fractions. In the J/ψγJ/\psi\gamma final state the limits are 1.5×1031.5\times10^{-3} and 2.6×1062.6\times10^{-6} for the Higgs and ZZ bosons, respectively, while in the Υ(1S,2S,3S)γ\Upsilon(1S,2S,3S)\,\gamma final states the limits are (1.3,1.9,1.3)×103(1.3,1.9,1.3)\times10^{-3} and (3.4,6.5,5.4)×106(3.4,6.5,5.4)\times10^{-6}, respectively

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions

    Finska tingsdomares bedömningar av partsutlåtanden givna på plats i rätten eller via videokonferens

    Get PDF
    Professionals within the judicial system sometimes believe they can assess whether someone is lying or not based on cues such as body language and emotional expression. Research has, however, shown that this is impossible. The Finnish Supreme Court has also given rulings in accordance with this demonstrated fact. There has also been previous research on whether party or witness statements are assessed differently in court depending on whether they are given live, via videoconference, or via prerecorded video. In the present study, we investigated how a Finnish sample of district judges (N=47) assigned probative value to different variables concerning the statement or the statement giver, such as body language and emotional expression. We also investigated the connection between the judges’ beliefs about the relevance of body language and emotional expression and their preference for live statements or statements via videoconference. The judges reported assigning equal amounts of probative value to statements given live and statements given via videoconference. However, judges found it easier to detect deception live, and this preference correlated with how relevant they thought body language is when assessing the probative value of the statement. In other words, a slight bias to assess live statements more favorably than statements given via videoconference might still exist. More effort needs to be put into making judges and Supreme Courts aware of robust scientific results that have been the subject of decades of research, such as the fact that one cannot assess whether someone is lying or not based on cues such as body language
    corecore